为 Agentic AI 的黎明构建地基

专注AIGC领域的专业社区,关注微软&OpenAI、百度文心一言、讯飞星火等大语言模型(LLM)的发展和应用落地,聚焦LLM的市场研究和AIGC开发者生态,欢迎关注!

在技术领域,我们常常被那些闪耀的、可见的成果所吸引。今天,这个焦点无疑是大语言模型技术。它们的流畅对话、惊人的创造力,让我们得以一窥未来的轮廓。然而,作为在企业一线构建、部署和维护复杂系统的实践者,我们深知,一个卓越的模型,本身并不能构成一个成功的企业级解决方案。它就像一座精心设计的摩天大楼的塔尖,倘若没有深植于地下的坚实地基,再璀璨的光芒也终将是昙花一现。


真正的挑战,也是真正的价值所在,在于构建那个支撑塔尖的、看似无形却至关重要的数字底座。这个底座并非一蹴而就的采购清单,而是一系列深思熟虑的架构决策、一种持续演进的工程文化,以及将这一切付诸实践的 IT 专业人士。随着我们迈入 Agentic AI 的时代—— 一个系统不仅能执行指令,更能自主思考、规划并行动的时代——对这个底座的要求已经发生了根本性的变化。


数据的范式转型


长久以来,我们习惯于将数据视为运营的副产品—— 一种需要被收集、清洗、存储在数据仓库或数据湖中的静态资产。在 Agentic AI 的世界里,数据的角色发生了戏剧性的转变。它不再是躺在数据库里等待被分析的石油,而是流淌在整个系统中的血液。



AI 系统,特别是智能体 (Agent),与数据的关系是持续的、双向的、对话式的。一个智能体在执行任务时,需要通过向量搜索等技术(如 RAG,检索增强生成)实时检索信息;它的行动会产生新的数据;而这些新数据又会反过来成为系统学习和进化的养料。这种持续的反馈循环,对我们的数据架构提出了严苛的要求。


数据治理 (Data Governance) 的内涵被彻底重塑。它不再是一个滞后的、审计驱动的合规流程,而必须是一个主动的、嵌入在数据流中的实时机制。我们需要将数据分类、访问控制、隐私保护等能力,通过标准化的 API 暴露给 AI 系统。   



基础设施的哲学重塑


“云原生”和“基础设施即代码”在过去十年中极大地提升了我们的部署效率和系统弹性。我们习惯于为无状态的应用构建可横向扩展的、同质化的计算集群。然而,AI 工作负载,特别是训练和大规模推理,有着截然不同的“脾性”。它们是计算密集型(尤其是对 GPU),往往是状态相关的(需要加载巨大的模型文件和向量索引),并且其负载模式可能极难预测。


这意味着基础设施本身需要具备一定的“智能”。它应该能够理解不同 AI 工作负载的特性。一个认知调度系统,应该能智能地编排这些异构需求,最大化昂贵硬件资源的利用率,同时保证关键业务的服务质量。


更进一步,我们可以借助 AI 技术来实现基础设施的现代化。想象一个基于 AI 技术的监控系统,它不仅能检测到传统的 CPU 或内存阈值,还能通过分析日志、追踪分布式调用链,来预测潜在的系统瓶颈或故障。它甚至可以自主地执行预案,比如将流量切换到健康的区域,或者提前为即将到来的计算高峰预热资源。



智能体模式的崛起


最后,我们来谈谈智能体本身。一个常见的误解是,智能体仅仅是一个更聪明的聊天机器人。从架构师的视角看,一个智能体 (Agent) 是一种新的设计模式。它是一个封装了目标、状态和能力的软件组件,能够通过“思考-行动”循环 (Reason-Act Loop)来与环境交互,以达成其预设的目标。


这与我们熟悉的自动化脚本或微服务有着本质的区别。一个脚本严格按照预定义的逻辑执行,缺乏适应性。一个微服务则被动地等待 API 调用。而一个智能体,则拥有一定程度的自主性 (Autonomy)。它能根据模糊的目标(例如,“帮用户解决订单发货延迟的问题”)自主地规划步骤、选择并调用工具(查询订单API、调用物流API、生成安抚邮件),并根据工具返回的结果调整下一步的行动。


这种模式的引入,对我们的系统设计提出了深刻的挑战和机遇。它们分别是工具化、编排与协同以及可观测性和安全护栏。智能体很聪明,但可靠调用工具的能力需要通过权限来保障。当系统中存在多个智能体,它们之间如何协同工作?当一个智能体做出了非预期的行为,我们如何回溯它的“思考过程”?



架构师,新时代的指挥家


我们正站在一个激动人心的技术变革的门槛上。AI 模型的能力演进速度令人惊叹,但这不应让我们忽视更为基础和持久的挑战。为 Agentic AI 时代做好准备,核心任务并非追逐下一个更强大的模型,而是系统性地、有远见地构建和加固我们的数字底座。


这趟旅程的核心,是从根本上重新思考我们与数据、基础设施和应用架构的关系。




对于身处其中的每一位技术决策者和 IT 专家而言,我们的角色从未如此重要。我们不再仅仅是技术的实现者或维护者,我们是这个复杂而宏大交响乐的指挥家。我们需要理解每一个乐器(AI模型、数据平台、基础设施)的特性,设计它们之间的和谐互动,并最终指挥它们奏出能够为企业创造巨大价值的华美乐章。


立刻加入我们——锁定 Microsoft Cloud & AI 技术峰会,与微软技术专家共建 Agentic AI 时代的数字底座。 扫描下方二维码或点击「阅读原文」,抢先获取四天完整议程与席位信息;让数据、基础设施与智能体全面协同,为业务升级提速。 


现在就行动,未来从此刻启程!


点击图片立即报名👇️

图片
图片

(文:AIGC开放社区)

发表评论