o1的风又吹到多模态,直接吹翻了GPT-4o-mini

开源LLaVA-o1一个设计用于进行自主多阶段推理的新型VLM。与思维链提示不同,LLaVA-o1独立地参与到总结、视觉解释、逻辑推理和结论生成的顺序阶段。

LLaVA-o1超过了一些更大甚至是闭源模型的性能,例如Gemini-1.5-proGPT-4o-miniLlama-3.2-90B-Vision-Instruct

基础模型与LLaVA-o1的比较。基础模型Llama-3.2-11B-Vision-Instruct在推理过程中有明显的缺陷,整个推理过程中出现了几个错误。相比之下,LLaVA-o1首先概述问题,从图像中解释相关信息然后进行逐步推理过程,并最终得出一个有充分支持的结论

LLaVA-o1如何炼成

LLaVA-o1模型的结构化推理框架专门的数据集和训练方法,以及推理时的阶段性束搜索策略,来提高模型在复杂任务中的推理能力和扩展性。

  1. 结构化推理阶段

    • 总结阶段(Summary Stage):LLaVA-o1在这一阶段提供对问题的高层次总结,概述它打算解决的问题的主要方面。

    • 图像描述阶段(Caption Stage):如果存在图像,LLaVA-o1提供与问题相关的图像元素的简洁概述,帮助理解多模态输入。

    • 推理阶段(Reasoning Stage):在初始总结的基础上,LLaVA-o1进行结构化、逻辑推理,得出初步答案。

    • 结论阶段(Conclusion Stage):在最后阶段,LLaVA-o1根据前面的推理综合答案。结论阶段的输出是直接提供给用户的响应,而前三个阶段是内部的“隐藏阶段”,代表LLaVA-o1的推理过程。

    • 四对特殊标签:<SUMMARY></SUMMARY><CAPTION></CAPTION><REASONING></REASONING><CONCLUSION></CONCLUSION>

  2. 数据准备和模型训练

    • 由于现有的视觉问题回答(VQA)数据集缺乏训练LLaVA-o1所需的详细推理过程,研究者们编译了一个新的数据集LLaVA-o1-100k,整合了多个广泛使用的VQA数据集的样本。

    • 使用GPT-4o生成包括总结、图像描述、推理和结论的详细推理过程,并将这些编译成LLaVA-o1-100k数据集。

    • 选择了Llama-3.2-11B-Vision-Instruct模型作为基础模型,并使用LLaVA-o1-100k数据集进行全参数微调。

  1. 有效的推理时扩展使用阶段性束搜索

    • 训练完成后的目标是在推理期间进一步增强模型的推理能力。LLaVA-o1的输出设计为结构化,提供了理想的粒度,用于推理时扩展。

    • 采用阶段性束搜索方法,该方法在每个推理阶段生成多个候选结果,并选择最佳结果以继续生成过程。

    • 通过在每个阶段进行有效的验证,这种方法验证了结构化输出在提高推理时扩展中的有效性。

推理方法的示意图最佳选择法(Best-of-N search)生成N个完整的响应,并从中选择最好的一个;句子级束搜索(Sentence-level Beam Search)为每个句子生成多个候选项并选择最好的一个。相比之下,LLaVA-o1的阶段性束搜索(Stage-level Beam Search)为每个推理阶段(例如,总结、标题、推理和结论)生成候选项,并在每个阶段选择最佳选项。最佳选择法在粗略层面上操作,而句子级束搜索过于细致,而LLaVA-o1的方法实现了最佳平衡并取得了最佳性能。

有无阶段性束搜索的LLaVA-o1性能比较LLaVA-o1的阶段性束搜索在模型推理过程中有效地选择了更好的推理。

实验数据

  • LLaVA-o1在多模态推理基准测试中相较于其基础模型Llama-3.2-11B-Vision-Instruct实现了8.9%的性能提升。

  • LLaVA-o1在各种基准测试中不仅超越了基础模型,还超过了一些更大甚至是闭源模型,例如Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。

  • 结构化标签(structured tags)对于模型性能至关重要。去除这些标签后,模型性能显著下降,说明这些标签有助于推理过程并提高了模型性能。

https://arxiv.org/pdf/2411.10440LLaVA-o1: Let Vision Language Models Reason Step-by-Stephttps://github.com/PKU-YuanGroup/LLaVA-o1

推荐阅读

  • • 对齐LLM偏好的直接偏好优化方法:DPO、IPO、KTO

  • • 一篇搭建AI大模型应用平台架构的全面指南

  • • RAG全景图:从RAG启蒙到高级RAG之36技,再到终章Agentic RAG!

  • • Agent到多模态Agent再到多模态Multi-Agents系统的发展与案例讲解(1.2万字,20+文献,27张图)


欢迎关注我的公众号“PaperAgent”,每天一篇大模型(LLM)文章来锻炼我们的思维,简单的例子,不简单的方法,提升自己。

(文:PaperAgent)

发表评论