『常学常新』吴恩达:AI时代,产品经理的黄金时代

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识,包括但不限于AI科普AI工具测评AI效率提升AI行业洞察。关注我,AI之路不迷路,2025我们继续出发。

吴恩达老师的这篇文章我读了多遍。

不管你是不是产品经理,这篇文章都值得一读。

这篇主题为“Why AI Product Management is the Future”的文章最早发布在吴恩达老师的DeepLearning.AI公司官网的每周通讯“The Batch”中,发布日期为2025年1月15日,是该系列的第284期。



在互联网行业,有一种特殊的“牛马”叫产品经理,英文名Product Manager,简称PM。而在当前的AI时代,有一种特殊的产品经理,叫AI产品经理

在经济学理论中,有一种现象叫互补品效应。当两种商品互为补充时,一种商品价格下降会刺激另一种商品需求上升 —— 比如汽车价格下降会带动汽油需求暴涨。当前,AI正在让软件开发变得更快更便宜,这反过来会让那些能提供清晰产品规划的人才变得炙手可热。

插一句】这里吴恩达老师说的其实和Sam Altman提出的“AI时代,提问能力比智力更重要”殊途同归。详情看:AI时代,“提问能力”比“智力”更重要

AI产品经理本质上就是个六边形战士。要了解AI技术、能把控迭代节奏,又要精通数据、适应不确定性。更重要的是,AI行业变化太快了,需要持续学习。

一些思考

蒸汽机让我们的身体走得更远,AI则让我们的思想走得更远。如果说蒸汽机延伸了我们的四肢,拓展了人类的物理边界,那么AI正在前所未有地拓展我们的认知边界。

未来,每个人都将与AI共事,无论你身处哪个行业。甚至是当下,我已经是每天使用AI工具的重度用户了。

AI时代,“定义需求”将变得越来越重要,这不仅仅适用于AI产品经理。如果说AI负责“解决问题”,那么我们就是负责“提出问题”。就像Sam Altman所说,提问能力比智力更重要。

AI时代,人人都是产品经理,人人都可以是产品经理



吴恩达:AI 时代,产品经理的黄金时代

朋友们,

如今,编写软件,特别是构建原型,正变得越来越容易、成本也越来越低。这一趋势将使得那些能够“拍板”构建什么的人才变得炙手可热。由此看来,AI 产品经理的前景可谓一片光明!(Writing software, especially prototypes, is becoming cheaper. This will lead to increased demand for people who can decide what to build. AI Product Management has a bright future!

软件开发通常由团队协作完成,其中产品经理 (PM) 负责确定产品的方向和功能(比如面向哪些用户群体,实现哪些具体功能),而软件开发人员 则负责编写代码,将产品构想变为现实。(Software is often written by teams that comprise Product Managers (PMs), who decide what to build (such as what features to implement for what users) and Software Developers, who write the code to build the product.

经济学原理告诉我们,当两种商品互为补充时——比如汽车(内燃机汽车)和汽油——其中一种商品价格下降,会导致对另一种商品的需求上升。举个例子,当汽车价格变得亲民,更多的人选择购买,从而带动了汽油需求的增长。类似的现象也将出现在软件行业。(Economics shows that when two goods are complements — such as cars (with internal-combustion engines) and gasoline — falling prices in one leads to higher demand for the other. For example, as cars became cheaper, more people bought them, which led to increased demand for gas. Something similar will happen in software.

只要有了明确的需求文档,AI 就能让软件构建过程变得更快更便宜。因此,那些能够针对有价值的产品提出清晰、明确规划的人才,其市场需求将显著提升。(Given a clear specification for what to build, AI is making the building itself much faster and cheaper. This will significantly increase demand for people who can come up with clear specs for valuable things to build.

这正是我对产品管理,尤其是 AI 产品管理 的未来充满期待的原因。产品管理是一门致力于软件产品开发与管理的学科,而 AI 产品管理则是专注于 AI 软件产品开发与管理的学科。(This is why I’m excited about the future of Product Management, the discipline of developing and managing software products. I’m especially excited about the future of AI Product Management, the discipline of developing and managing AI software products.

许多公司的工程师与产品经理的比例,大概是 6:1 的样子(当然,这个比例在不同公司和行业之间差异很大,通常在 4:1 到 10:1 之间)。随着编程效率的提升,我认为,在团队总人数中,产品管理(以及设计工作)的占比将会上升。也许一部分工程师会开始涉足产品管理工作,但如果这部分工作仍然主要由专业的产品经理负责,那么市场对产品经理岗位的需求将会只增不减。(Many companies have an Engineer:PM ratio of, say, 6:1. (The ratio varies widely by company and industry, and anywhere from 4:1 to 10:1 is typical.) As coding becomes more efficient, I think teams will need more product management work (as well as design work) as a fraction of the total workforce. Perhaps engineers will step in to do some of this work, but if it remains the purview of specialized Product Managers, then the demand for these roles will grow.

然而,软件开发团队人员构成的这一转变尚未全速推进。阻碍这一转变的一个主要因素,尤其是在 AI 产品管理领域,是软件工程师作为技术人员,对 AI 的理解和接受速度远超产品经理。时至今日,大多数公司仍然难以找到既懂产品开发又懂 AI 的复合型人才,而且我认为这种人才短缺的现象还会加剧。(This change in the composition of software development teams is not yet moving forward at full speed. One major force slowing this shift, particularly in AI Product Management, is that Software Engineers, being technical, are understanding and embracing AI much faster than Product Managers. Even today, most companies have difficulty finding people who know how to develop products and also understand AI, and I expect this shortage to grow.

那么,AI 产品经理需要具备哪些能力呢?

不同于传统的软件产品管理,AI 产品管理需要一套独特的技能组合:

  • 深厚的 AI 技术功底: 产品经理需要了解哪些产品在技术上是可行的,还需要掌握 AI 项目的完整生命周期,包括数据采集、模型构建、监控和维护。(Technical proficiency in AI. PMs need to understand what products might be technically feasible to build. They also need to understand the lifecycle of AI projects, such as data collection, building, then monitoring, and maintenance of AI models. )
  • 迭代开发的把控能力: AI 开发比传统软件开发更具迭代性,过程中需要更多调整和优化,产品经理需要懂得如何管理这种迭代流程。(Iterative development. Because AI development is much more iterative than traditional software and requires more course corrections along the way, PMs need to understand how to manage such a process. )
  • 优秀的数据素养: AI 产品通常依赖数据进行学习,并且可以被设计成比传统软件产生更加丰富的数据,熟悉数据、利用数据是必须的技能。(Data proficiency. AI products often learn from data, and they can be designed to generate richer forms of data than traditional software. )
  • 应对不确定性的能力: 由于 AI 的性能往往难以预先准确判断,产品经理需要适应这种不确定性,并有策略地进行管理。(Skill in managing ambiguity. Because AI’s performance is hard to predict in advance, PMs need to be comfortable with this and have tactics to manage it. )
  • 持续学习的热情: AI 技术日新月异。与其他致力于有效利用该技术的人一样,产品经理需要不断学习、掌握最新的技术进展、产品理念,以及如何将它们融入用户的生活之中。(Ongoing learning. AI technology is advancing rapidly. PMs, like everyone else who aims to make best use of the technology, need to keep up with the latest technology advances, product ideas, and how they fit into users’ lives. )

最后,AI 产品经理还需要懂得如何确保 AI 技术的应用是负责任的(例如,何时需要设置“防护栏”以防止不良后果),还需要善于快速收集反馈,推动项目向前发展。此外,我越来越期待优秀的产品经理能够亲自动手构建产品原型。(Finally, AI Product Managers will need to know how to ensure that AI is implemented responsibly (for example, when we need to implement guardrails to prevent bad outcomes), and also be skilled at gathering feedback fast to keep projects moving. Increasingly, I also expect strong product managers to be able to build prototypes for themselves.

市场对优秀 AI 产品经理的需求将会非常巨大。除了 AI 产品管理这门学科自身的发展壮大之外,或许一些工程师最终也会承担更多产品管理的职责。(The demand for good AI Product Managers will be huge. In addition to growing AI Product Management as a discipline, perhaps some engineers will also end up doing more product management work.

我们可以创造的价值几乎是无限的。这是一个多么激动人心的创造时代!(The variety of valuable things we can build is nearly unlimited. What a great time to build!

与诸君共勉,

吴恩达(Keep learning, Andrew


最后附上这篇文章的原文链接:

https://www.deeplearning.ai/the-batch/issue-284/



(文:AI信息Gap)

欢迎分享

发表评论