一篇142页全面复盘DeepSeek R1思考推理技术综述

通过分类体系分析DeepSeek-R1的推理模块及其在不同任务中的表现,揭示了推理链条的结构一致性、反刍行为和长度对性能的影响,并发现存在一个“最佳点”来优化模型性能,同时探讨了长文本处理与人类认知负荷的关系。

ICLR 2025杰出论文揭晓:中科大LLM编辑、DeepMind安全对齐、LLM微调学习动态

ICLR 2025杰岀论文奖揭晓!3篇杰出论文涵盖安全对齐、语言模型学习动态和编辑等方面的研究成果,强调了当前大型语言模型存在的问题及潜在解决方案。

首篇MCP技术生态全面综述:核心组件、工作流程、生命周期

Model Context Protocol (MCP) is a standardized interface aimed at achieving seamless interaction between AI models and external tools and resources, breaking down data silos and enhancing interoperability across different systems. MCP’s core components include the MCP host, client, and server, working together to enable secure and efficient communication with AI applications and external data sources. It covers lifecycle stages like creation, operation, and updates of MCP servers, along with an ecosystem including key adopters such as Anthropic, OpenAI, and community-driven platforms. This protocol also discusses security threats at each stage and proposed mitigation strategies.

微软开源MAI-DS-R1:敏感提示响应比DeepSeek-R1提升200%,风险降50%

微软发布MAI-DS-R1模型,通过35万个敏感主题示例后训练提高了其在该类主题上的响应能力及风险配置优化,使其能够成功响应99.3%相关提示,满意度指标也高于DeepSeek R1和R1-1776。同时,在减少有害内容方面表现优于其他模型,推理能力和一般知识保持不变。