大模型检索增强生成之向量数据库的问题

向量数据库通过向量化和相似度计算实现高效的数据检索。它主要应用于人工智能领域,并在推荐系统、图像识别等方面发挥作用。相比传统数据库,向量数据库擅长处理非结构化数据的语义相关性,其核心在于对不同模态数据进行向量化处理以及利用相似度计算算法来优化搜索性能和结果准确性。

再谈大模型长文本分块,以及分块在RAG中的作用?

文本分块技术用于解决长文本处理中的上下文窗口限制问题。在大模型中采用类似阅读厚书的方法进行分块,使用chunk_overlap参数确保相关性。但在向量数据库中检索时,如何保证语义相关性的高效检索成为新挑战。