机器人灵巧手企业「灵心巧手」获亿元融资

灵心巧手获得超亿元种子轮融资,用于底层技术研发和产品优化迭代。公司深耕柔性人形机器人在大健康领域的应用,并已推出Linker Hand系列灵巧手,覆盖多种设计规格和传感器系统,可实现复杂精细动作的控制与感知交互。

首次引入强化学习!火山引擎Q-Insight让画质理解迈向深度思考

Q-Insight 提出了一种基于强化学习训练的多模态大模型图像画质理解方案,通过挖掘大模型自身的推理潜力,实现对图像质量的深度理解,并在多个任务上达到业界领先水平。

CVPR 2025|北大开源多模态驱动的定制化漫画生成框架DiffSensei,还有4.3万页漫画数据集

DiffSensei 是首个结合多模态大语言模型(MLLM)与扩散模型的定制化漫画生成框架,通过创新机制实现角色控制、布局精准及动态叙事。该框架支持从文本到漫画的高效转换,并发布首个专为漫画生成设计的数据集MangaZero,提升角色一致性、文本跟随能力和图像质量。

ET-SEED:提升机器人操作泛化能力的高效等变扩散策略

本文介绍了一种新的扩散策略ET-SEED,它结合了轨迹级SE(3)等变性扩散和高效的去噪策略,在少量示范数据下能够高效学习复杂的机器人操作技能,并且在不同物体姿态和场景下的泛化能力也得到了提升。

一句话让DeepSeek思考停不下来,北大团队:这是针对AI的DDoS攻击

北大团队发现一段提示词可以让大模型陷入无限思考,并且这种现象可以传递和复制。研究显示乱码问题更容易引发模型的“stuck”机制,说明模型有一定程度的防御措施,但面对具有含义的正常文本时仍需加强。

大模型训练或无需“纯净数据”!北大团队新研究:随机噪声影响有限,新方法让模型更抗噪

北大团队研究发现,在训练数据中加入随机噪音并不会严重影响语言模型的性能。即使高达20%的数据被污染,模型的预测损失仅上升约1%,并提出局部梯度匹配方法进一步提升其鲁棒性。

英伟达视频模型Magic 1-For-1,1 分钟生成 1 分钟视频,且开源

近日英伟达联合北京大学和Hedra Inc开源了Magic 1-For-1 AI视频生成模型,其特点是生成速度快且开源,并通过量化技术将模型体积从32GB压缩至16GB。该模型支持多模态输入、扩散步骤蒸馏等技术。缺点在于高速运动场景的处理能力有限,以及视频分辨率较低。